Divergent growth‐differentiation balance strategies and resource competition shape mortality patterns in ponderosa pine

Author:

Ferrenberg Scott1ORCID,Vázquez‐González Carla23ORCID,Lee Steven R.4ORCID,Kristupaitis Milda4

Affiliation:

1. Department of Ecosystem and Conservation Sciences University of Montana Missoula Montana USA

2. Department of Ecology and Evolutionary Biology University of California Irvine California USA

3. Misión Biológica de Galicia National Spanish Research Council Pontevedra Spain

4. Department of Biology New Mexico State University Las Cruces New Mexico USA

Abstract

AbstractDynamic resource availability leads to trade‐offs among functions in plants. The growth‐differentiation balance hypothesis (GDBH) predicts greater allocation of carbon to defense than growth when resources are scarce, with optimum defense production occurring at a point between the minimum and maximum growth rates. While the GDBH has been widely tested, consideration of phenotypic variation in rates for which defense is traded for growth and what this variation means for plant resistance remains rare. For defense, pines produce and store oleoresin in “resin ducts.” Retrospective comparisons of resin ducts in pines have revealed that trees with greater numbers, sizes, or areas of xylem resin ducts are more likely to avoid or survive insect attack. We used tree ring chronologies to quantify phenotypic variation in growth and resin duct defenses in pairs of living and bark beetle‐killed Pinus ponderosa trees in southern New Mexico, USA, and to test the utility of the GDBH for explaining tree mortality. We also assessed the sensitivity of annual growth to climate and competitor density in years preceding mortality in each pair. Survivors had greater growth rates and total cross‐sectional areas of resin ducts than trees killed by bark beetles. We did not observe a difference in climate–growth relationships among the groups; however, trees killed by bark beetles suffered negative effects of competition while survivors did not. Growth‐defense trade‐offs conformed to the GDBH's prediction of a quadratic relationship; however, the two groups significantly differed in the rate at which defense was traded for increasing levels of annual growth. Our results demonstrate that phenotypic variation in the trade‐off between growth and defense could be used to characterize trees that were killed by or survived recent natural enemy epidemics. We hypothesize that the GDBH could be integrated with the characterization of phenotypic variation in growth‐differentiation strategies—along with parsing of gene versus environment influences on phenotypes—at both local and landscape scales to increase our understanding of patterns of natural enemy impacts in plant populations.

Publisher

Wiley

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3