Affiliation:
1. State Key Laboratory of Robotics and System Harbin Institute of Technology Harbin China
2. College of Electrical Engineering Liaoning University of Technology Jinzhou China
Abstract
AbstractIn this study, a finite‐time online optimal controller was designed for a nonlinear wheeled mobile robotic system (WMRS) with inequality constraints, based on reinforcement learning (RL) neural networks. In addition, an extended cost function, obtained by introducing a penalty function to the original long‐time cost function, was proposed to deal with the optimal control problem of the system with inequality constraints. A novel Hamilton‐Jacobi‐Bellman (HJB) equation containing the constraint conditions was defined to determine the optimal control input. Furthermore, two neural networks (NNs), a critic and an actor NN, were established to approximate the extended cost function and the optimal control input, respectively. The adaptation laws of the critic and actor NN were obtained with the gradient descent method. The semi‐global practical finite‐time stability (SGPFS) was proved using Lyapunov's stability theory. The tracking error converges to a small region near zero within the constraints in a finite period. Finally, the effectiveness of the proposed optimal controller was verified by a simulation based on a practical wheeled mobile robot model.
Funder
Fundamental Research Funds for the Central Universities
Postdoctoral Scientific Research Development Fund of Heilongjiang Province
Higher Education Discipline Innovation Project
National Natural Science Foundation of China
Subject
Control and Systems Engineering,Electrical and Electronic Engineering,Mathematics (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献