Tannic Acid Lipid Nanoparticles can Deliver Messenger RNA Payloads and Improve their Endosomal Escape

Author:

Ma Yutian1,Fenton Owen S.1

Affiliation:

1. Division of Pharmacoengineering and Molecular Pharmaceutics Eshelman School of Pharmacy University of North Carolina at Chapel Hill Chapel Hill NC 27599 USA

Abstract

AbstractEven though lipid nanoparticles (LNPs) can deliver messenger RNA (mRNA) payloads into cells, their efficiency is often limited by endosomal trapping which prevents RNA payloads from acting therapeutically. Improving the percentage of RNA LNPs that can escape from endosomes and enter the cytoplasm is therefore an area of active research interest that could lead to improved safety profiles and reduced manufacturing costs of mRNA drugs. Here, tannic acid mRNA LNPs [TA(+) mRNA LNPs] are reported as an effective delivery platform for the delivery of mRNA payloads. The formulation, characterization, and stability of TA(+) mRNA LNPs are described; two different approaches via confocal microscopy are then utilized to quantify the endosomal escape of the TA(+) mRNA LNPs; and lastly, the biodistribution and tolerability of the TA(+) mRNA LNPs are evaluated in mice following intravenous and intramuscular dosing regimens. To isolate the effect that TA imparts on each of these properties, mRNA LNPs that do not contain TA [TA(−) mRNA LNPs] are evaluated side‐by‐side in each of these studies. A collective analysis of these results suggests that TA(+) mRNA LNPs are effective carriers for mRNA payloads and that the incorporation of TA within each formulation improves the endosomal escape of mRNA LNPs.

Funder

University of North Carolina at Chapel Hill

Publisher

Wiley

Subject

Pharmacology (medical),Biochemistry (medical),Genetics (clinical),Pharmaceutical Science,Pharmacology,Medicine (miscellaneous)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3