Bioempowerment of Therapeutic Living Cells by Single‐Cell Surface Engineering

Author:

Yang Seoin1,Choi Hyunwoo1,Nguyen Duc Tai1,Kim Nayoung1,Rhee Su Yeon1,Han Sang Yeong1,Lee Hojae2ORCID,Choi Insung S.1ORCID

Affiliation:

1. Center for Cell‐Encapsulation Research Department of Chemistry KAIST Daejeon 34141 South Korea

2. Department of Chemistry Hallym University Chuncheon 24252 South Korea

Abstract

AbstractLiving cells have the irreplaceable capability to achieve a wide range of complex biochemical reactions precisely and efficiently, which makes them attractive materials for therapeutic applications. In lieu of the traditional biochemical and biological approaches primarily focused on the augmentation of the innate functions of cells, there has been appreciable progress in the development of engineered therapeutic cells, mainly based on the chemical modifications of cell surfaces, at the single‐cell level, which empowers individual living cells with designed therapeutic functions in a cytocompatible manner. This review highlights the latest advances in the development of therapeutic living cells using single‐cell surface engineering, for potential applications in blood transfusion, drug delivery, cancer therapy, probiotic therapy, and tissue engineering and regenerative medicine. The methodological strategies for functionalizing cell surfaces with biomolecules, and inorganic and organic materials, to endow living cells with extrinsic physicochemical and biological properties as well as to increase the durability and efficacy of engineered therapeutic cells, are also briefly overviewed. The review ends with a perspective that discusses the construction of active cell‐in‐shell nanobiohybrid systems, in which exogenous materials formed on cell surfaces mutually and intimately communicate with the cells inside, as a future research direction for single‐cell surface engineering.

Funder

National Research Foundation of Korea

Publisher

Wiley

Subject

Pharmacology (medical),Biochemistry (medical),Genetics (clinical),Pharmaceutical Science,Pharmacology,Medicine (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3