Regional specificity of cathodal transcranial direct current stimulation effects on spatial–numerical associations: Comparison of four stimulation sites

Author:

Farshad Maryam1ORCID,Artemenko Christina12,Cipora Krzysztof123,Svaldi Jennifer1,Schroeder Philipp A.1ORCID

Affiliation:

1. Department of Psychology University of Tuebingen Tuebingen Germany

2. LEAD Research Network University of Tuebingen Tuebingen Germany

3. Centre for Mathematical Cognition Loughborough University Loughborough UK

Abstract

AbstractNeuromodulation with transcranial direct current stimulation (tDCS) is an increasingly popular research tool to experimentally manipulate cortical areas and probe their causal involvements in behavior, but its replicability and regional specificity are not clear. This registered report investigated cathodal tDCS effects on spatial–numerical associations (i.e., the SNARC effect), the numerical distance effect (NDE), and inhibitory control (i.e., stop‐signal reaction time; SSRT). Healthy adults (N = 160) were randomly assigned to one of five groups to receive sham tDCS or 1 mA cathodal tDCS to one of four stimulation sites (left/right prefrontal cortex [PFC], left/right posterior parietal cortex) with extracephalic return. We replicated that cathodal tDCS over the left PFC reduced the SNARC effect compared to sham tDCS and to tDCS over the left parietal cortex. However, neither NDE nor SSRT were modulated in the main analyses. Post hoc contrasts and exploratory analyses showed that cathodal tDCS over the right PFC had a time‐dependent effect by delayed practice‐related improvements in SSRT. Math anxiety moderated changes in the NDE in the groups receiving tDCS to the right parietal cortex. With few exceptions, the replicability and regional specificity of tDCS effects on behavior were weak and partially moderated by individual differences. Future research needs to characterize the parameter settings for effective neuromodulation.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3