Whey protein hydrolysate intervention ameliorates memory deficits in APP/PS1 mice: Unveiling gut microbe–short‐chain fatty acid–brain axis

Author:

Zhou Yongjie1,Meng Hanxiu1,Ding Ning1,Hong Hui1,Luo Yongkang1,Wu Chao1,Tan Yuqing1ORCID

Affiliation:

1. Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering China Agricultural University Beijing China

Abstract

AbstractThe intricate causes of Alzheimer's disease (AD) hinder effective, lasting treatment. Although the dietary modulation of the brain–gut axis was explored for AD therapy, the exact mechanism remains unclear. This study suggested that 140 days of the whey protein hydrolysate (WPH) intake could attenuate the AD pathologic symptoms in APP/PS1 transgenic mice via a bidirectional action of the gut microbe–SCFA (short‐chain fatty acid)–brain axis. Behavioral tests demonstrated that high‐dose WPH (WPH‐H, 100 mg/kg body weight [bw]) improved passive and recognition memory in mice. Furthermore, WPH‐H significantly reduced amyloid beta 1–42 (Aβ1–42) levels in serum (p < .05) and brain (p < .001) while enhancing serum superoxide dismutase (SOD) activity (p < .01). Brain acetylcholinesterase (p < .01) activity and pro‐inflammatory factors in serum were also reduced. Notably, WPH‐H remodeled gut microbiota composition by increasing Dubosiella and decreasing Bacteroides and norank_f__Ruminococcaceae while stimulating SCFA production. Proteomics indicated that WPH enhanced neurotoxic Aβ autophagy, synaptogenesis, neurotransmitter delivery, and antioxidative stress response via regulated protein expression. Correlation analysis revealed strong links between modified gut microbiota, elevated SCFA levels, and hippocampal protein up‐regulation (Atg4b, Nsfl1c, Tcf20, Nr2f1, and Trappc9) and down‐regulation (Krt1). Overall, the amelioration of memory deficits in APP/PS1 mice through WPH‐H consumption can be attributed to the interconnected interactions among gut microbes, SCFAs, and brain. Our study illuminated the intricate interplay between nutrition, gut health, and memory function, emphasizing WPH's potential in alleviating AD symptoms.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3