Affiliation:
1. School of Environment and Energy South China University of Technology Guangzhou 510006 China
2. School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510006 China
3. National Engineering Laboratory for VOCs Pollution Control Technology and Equipment Guangzhou Higher Education Mega Centre Guangzhou 510006 China
4. Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control (SCUT) Guangzhou Higher Education Mega Centre Guangzhou 510006 China
Abstract
AbstractSuperhydrophobic coating has a great application prospect in self‐cleaning and oil‐water separation but remains challenging for large‐scale preparation of robust and weather‐resistant superhydrophobic coatings via facile approaches. Herein, this work reports a scalable fabrication of weather‐resistant superhydrophobic coating with multiscale rough coral reef‐like structures by spraying the suspension containing superhydrophobic silica nanoparticles and industrial coating varnish on various substrates. The coral reef‐like structures effectively improves the surface roughness and abrasion resistance. Rapid aging experiments (3000 h) and the outdoor building project application (3000 m2) show that the sprayed superhydrophobic coating exhibits excellent self‐cleaning properties, weather resistance, and environmental adaptability. Moreover, the combined silica‐coating varnish‐polyurethane (CSCP) superhydrophobic sponge exhibits exceptional oil‐water separation capabilities, selectively absorbing the oils from water up to 39 times of its own weight. Furthermore, the molecular dynamics (MD) simulation reveals that the combined effect of higher surface roughness, smaller diffusion coefficient of water molecules, and weaker electrostatic interactions between water and the surface jointly determines the superhydrophobicity of the prepared coating. This work deepens the understanding of the anti‐wetting mechanism of superhydrophobic surfaces from the perspective of energetic and kinetic properties, thereby paving the way for the rational design of superhydrophobic materials and their large‐scale applications.
Subject
Biomaterials,Biotechnology,General Materials Science,General Chemistry
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献