Compression molding of ethylene–octene copolymer‐toughened polypropylene/graphene surfaces with actively controlled shape‐morphing microarchitectures induced by friction and wear

Author:

He Jiayi12,Wu Weiting12,Xu Jinhua12,Ding Sha12,Zhang Xin12,Zhang Jingjing2,Lei Caihong2,Chen Anfu12,Huang Lijia3

Affiliation:

1. Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center Jieyang People's Republic of China

2. Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy Guangdong University of Technology Guangzhou People's Republic of China

3. Department of Operative Dentistry and Endodontics Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat‐Sen University, Guangdong Provincial Key Laboratory of Stomatology Guangzhou People's Republic of China

Abstract

AbstractSuperhydrophobic microarchitectured polyolefin surfaces are currently used intensively in various industrial applications. However, the deployment of products made of these materials into practical application is typically constrained by their inferior dry sliding behaviors, which stem from their limited strength and toughness. To obtain reinforced and toughened superhydrophobic microstructured surfaces that can be easy to demold and overcome friction in the workplace, elastomeric ethylene–octene copolymer (POE) and rigid graphene (GP) were introduced into the polypropylene (PP) matrix to prepare microstructured PP/POE/GP surfaces by compression molding. The elongation at break is significantly improved by 2000% and reached up to 520.33%. The contact angle (CA) of the microstructured PP/POE/GP surface increases to 154.4°. They exhibit superhydrophobic and low adhesion characteristic, that is, lotus effect. The enhanced toughness of PP/POE/GP composites reduces wear debris and damage to microarchitecture during the abrasion process. Even after the microstructured PP/POE/GP surfaces were worn after a distance length of 3000 mm, they still exhibited superhydrophobic, but high adhesion characteristic, that is, petal effect. The controlled shape‐morphing microarchitectures formed on the microstructured PP/POE/GP surface abraded after 1000 mm, possessing wetting stability during droplet impacting.Highlights The elongation at break of composites was improved by 2000% through adding POE. The composite microstructure deforms to consume energy during abrasion and POE reinforces this energy dissipation process. POE improves fracture toughness and wetting stability of composites.

Funder

Basic and Applied Basic Research Foundation of Guangdong Province

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3