Manipulating Redox Kinetics using p‐n Heterojunction Biservice Matrix as both Cathode Sulfur Immobilizer and Anode Lithium Stabilizer for Practical Lithium–Sulfur Batteries

Author:

Du Xiaohang1,Wen Chenxu12,Luo Yuhong1,Luo Dan34,Yang Tingzhou3,Wu Lanlan1,Li Jingde1,Liu Guihua1,Chen Zhongwei3ORCID

Affiliation:

1. School of Chemical Engineering and Technology Hebei University of Technology Tianjin 300130 China

2. Shandong Haihua Co., Ltd. Weifang Shandong 262737 China

3. Department of Chemical Engineering Waterloo Institute for Nanotechnology University of Waterloo Waterloo ON N2L 3G1 Canada

4. Power battery and system research center Chinese Academy of Sciences, Dalian Institute of Chemical Physics Dalian 116023 China

Abstract

AbstractAs an attractive high‐energy‐density technology, the practical application of lithium–sulfur (Li–S) batteries is severely limited by the notorious dissolution and shuttle effect of lithium polysulfides (LiPS), resulting in sluggish reaction kinetics and uncontrollable dendritic Li growth. Herein, a p‐n typed heterostructure consisting of n‐type MoS2 nanoflowers embedded with p‐type NiO nanoparticles is designed on carbon nanofibers (denoted as NiO‐MoS2@CNFs) as both cathode sulfur immobilizer and anode Li stabilizer for practical Li–S batteries. Such p‐n typed heterostructure is proposed to establish the built‐in electric field across the heterointerface for facilitated the positive charge to reach the surface of NiO‐MoS2, meanwhile inherits the excellent LiPS adsorption ability of p‐type NiO nanoparticles and catalytic ability of n‐type MoS2. As the anode matrix, the implementation of NiO–MoS2 heterostructure can prevent the growth of Li dendrites by enhancing the lithiophilicity and reducing local current density. The obtained Li–S full battery exhibits an ultra‐high areal capacity over 7.3 mAh cm−2, far exceeding that of current commercial Li‐ion batteries. Meanwhile, a stable cycling performance can be achieved under low electrolyte/sulfur ratio of 5.8 µL mg−1 and negative/positive capacity ratio of 1. The corresponding pouch cell maintains high energy density of 305 Wh kg−1 and stable cycling performance under various bending angles.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hebei Province

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3