Progresses and Prospects of Asymmetrically Coordinated Single Atom Catalysts for Lithium−Sulfur Batteries

Author:

Zhou Rong1,Gu Shaonan1ORCID,Guo Meng1,Xu Shuzheng1,Zhou Guowei1ORCID

Affiliation:

1. Key Laboratory of Fine Chemicals in Universities of Shandong, Jinan Engineering Laboratory for Multi‐scale Functional Materials, School of Chemistry and Chemical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 China

Abstract

Lithium–sulfur batteries (LSBs) are widely regarded as promising next‐generation batteries due to their high theoretical specific capacity and low material cost. However, the practical applications of LSBs are limited by the shuttle effect of lithium polysulfides (LiPSs), electronic insulation of charge and discharge products, and slow LiPSs conversion reaction kinetics. Accordingly, the introduction of catalysts into LSBs is one of the effective strategy to solve the issues of the sluggished LiPS conversion. Because of their nearly 100% atom utilization and high electrocatalytic activity, single‐atom catalysts (SACs) have been widely used as reaction mediators for LSBs' reactions. Excitingly, the SACs with asymmetric coordination structures have exhibited intriguing electronic structures and superior catalytic activities when compared to the traditional M–N4 active sites. In this review, we systematically describe the recent advancements in the installation of asymmetrically coordinated single‐atom structure as reactions catalysts in LSBs, including asymmetrically nitrogen coordinated SACs, heteroatom coordinated SACs, support effective asymmetrically coordinated SACs, and bimetallic coordinated SACs. Particularly noteworthy is the discussion of the catalytic conversion mechanism of LiPSs spanning asymmetrically coordinated SACs. Finally, a perspective on the future developments of asymmetrically coordinated SACs in LSB applications is provided.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3