Low‐Temperature ALD of SbOx/Sb2Te3 Multilayers with Boosted Thermoelectric Performance

Author:

Yang Jun12ORCID,Mukherjee Samik13,Lehmann Sebastian1,Krahl Fabian1,Wang Xiaoyu45,Potapov Pavel6,Lubk Axel6,Ritschel Tobias7,Geck Jochen7,Nielsch Kornelius12

Affiliation:

1. Institute for Metallic Materials Leibniz Institute for Solid State and Materials Research 01069 Dresden Germany

2. Institute of Materials Science Technische Universität Dresden 01062 Dresden Germany

3. Jio Institute Navi Mumbai Maharashtra 410206 India

4. Institute for Integrative Nanosciences Leibniz Institute for Solid State and Materials Research 01069 Dresden Germany

5. School of Physics and Optoelectronic Engineering Hainan University Haikou 570228 China

6. Institute for Solid State Research Leibniz Institute for Solid State and Materials Research 01069 Dresden Germany

7. Institute of Solid State and Materials Physics Technische Universität Dresden 01069 Dresden Germany

Abstract

AbstractNanoscale superlattice (SL) structures have proven to be effective in enhancing the thermoelectric (TE) properties of thin films. Herein, the main phase of antimony telluride (Sb2Te3) thin film with sub‐nanometer layers of antimony oxide (SbOx) is synthesized via atomic layer deposition (ALD) at a low temperature of 80 °C. The SL structure is tailored by varying the cycle numbers of Sb2Te3 and SbOx. A remarkable power factor of 520.8 µW m−1 K−2 is attained at room temperature when the cycle ratio of SbOx and Sb2Te3 is set at 1:1000 (i.e., SO:ST = 1:1000), corresponding to the highest electrical conductivity of 339.8 S cm−1. The results indicate that at the largest thickness, corresponding to ten ALD cycles, the SbOx layers act as a potential barrier that filters out the low‐energy charge carriers from contributing to the overall electrical conductivity. In addition to enhancing the scattering of the mid‐to‐long‐wavelength at the SbOx/Sb2Te3 interface, the presence of the SbOx sub‐layer induces the confinement effect and strain forces in the Sb2Te3 thin film, thereby effectively enhancing the Seebeck coefficient and reducing the thermal conductivity. These findings provide a new perspective on the design of SL‐structured TE materials and devices.

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3