Affiliation:
1. Department of Mechanical Engineering City University of Hong Kong Hong Kong 999077 P. R. China
2. Department of Mechanical and Electrical Engineering Nanjing University of Aeronautics and Astronautics Nanjing Jiangsu 210000 P. R. China
3. Department of Mechanical Engineering The Hong Kong Polytechnic University Hong Kong 999077 P. R. China
Abstract
AbstractSuperhydrophobic and slippery lubricant‐infused surfaces have garnered significant attention for their potential to passively transport low‐viscosity liquids like water (1 mPa s). Despite exciting progress, these designs have proven ineffective for transporting high‐viscosity liquids such as polydimethylsiloxane (5500 mPa s) due to their inherent limitations imposed by the homogenous surface design, resulting in high viscous drags and compromised capillary forces. Here, a heterogenous water‐infused divergent surface (WIDS) is proposed that achieves spontaneous, rapid, and long‐distance transport of viscous liquids. WIDS reduces viscous drag by spatially isolating the viscous liquids and surface roughness through its heterogenous, slippery topological design, and generates capillary forces through its heterogenous wetting distributions. The essential role of surface heterogeneity in viscous liquid transport is theoretically and experimentally verified. Remarkably, such a heterogenous paradigm enables transporting liquids with viscosities exceeding 12 500 mPa s, which is two orders of magnitude higher than state‐of‐the‐art techniques. Furthermore, this heterogenous design is generic for various viscous liquids and can be made flexible, making it promising for various systems that require viscous liquid management, such as micropatterning.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province
Fok Ying Tung Education Foundation
Fundamental Research Funds for the Central Universities
Subject
Biomaterials,Biotechnology,General Materials Science,General Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献