Affiliation:
1. Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry Beihang University Beijing 102206 China
2. National Engineering Research Center of Functional Carbon Composite Aerospace Research Institute of Materials and Processing Technology Beijing 100076 China
Abstract
AbstractAccurate dosing for various liquids, especially for highly viscous liquids, is fundamental in wide‐ranging from molecular crosslinking to material processing. Despite droppers or pipettes being widely used as pipetting devices, they are powerless for quantificationally splitting and dosing highly viscous liquids (>100 mPa s) like polymer liquids due to the intertwined macromolecular chains and strong cohesion energy. Here, a highly transparent photopyroelectric slippery (PS) platform is provided to achieve noncontact self‐splitting for liquids with viscosity as high as 15 000 mPa s, just with the assistance of sunlight and a cooling source to provide a local temperature difference (ΔT). Moreover, to guarantee the accuracy for pipetting liquids (>80%), the ultrathin MXene film (within a thickness of 20 nm) is self‐assembled as the photo‐thermal layers, overcoming the trade‐off between transparency and photothermal property. Compared with traditional pipetting strategies (≈1.3% accuracy for pipetting polymer liquids), this accurate microfluidic chip shows great potential in adhesive systems (bonding strength, twice than using the droppers or pipettes).
Funder
National Natural Science Foundation of China
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献