Insight into Dendrites Issue in All Solid‐State Batteries with Inorganic Electrolyte: Mechanism, Detection and Suppression Strategies

Author:

Sun Tianrui12,Liang Qi3,Wang Sizhe23ORCID,Liao Jiaxuan12

Affiliation:

1. School of Material and Energy University of Electronic Science and Technology of China Chengdu 611731 China

2. Yangtze Delta Region Institute (Quzhou) University of Electronic Science and Technology of China Quzhou 313001 China

3. School of Material Science and Technology Shaanxi University of Science and Technology Xi'an 710021 China

Abstract

AbstractAll solid‐state batteries (ASSBs) are regarded as one of the promising next‐generation energy storage devices due to their expected high energy density and capacity. However, failures due to unrestricted growth of lithium dendrites (LDs) have been a critical problem. Moreover, the understanding of dendrite growth inside solid‐state electrolytes is limited. Since the dendrite process is a multi‐physical field coupled process, including electrical, chemical, and mechanical factors, no definitive conclusion can summarize the root cause of LDs growth in ASSBs till now. Herein, the existing works on mechanism, identification, and solution strategies of LD in ASSBs with inorganic electrolyte are reviewed in detail. The primary triggers are thought to originate mainly at the interface and within the electrolyte, involving mechanical imperfections, inhomogeneous ion transport, inhomogeneous electronic structure, and poor interfacial contact. Finally, some of the representative works and present an outlook are comprehensively summarized, providing a basis and guidance for further research to realize efficient ASSBs for practical applications.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3