Regulated Surface Electronic States of CuNi Nanoparticles through Metal‐Support Interaction for Enhanced Electrocatalytic CO2 Reduction to Ethanol

Author:

Zhang Kaiyue1,Wang Jing2,Zhang Weining1,Yin Hongfei1,Han Jiuhui3,Yang Xiaoyong45,Fan Weiliu2,Zhang Yongzheng1ORCID,Zhang Ping1

Affiliation:

1. School of Physics and Physical Engineering Qufu Normal University Qufu 273165 China

2. School of Chemistry and Chemical Engineering Shandong University Jinan 250100 China

3. Institute for New Energy Materials and Low‐Carbon Technologies Tianjin University of Technology Tianjin 300384 China

4. Department of Materials Science and Engineering KTH Royal Institute of Technology Stockholm SE‐10044 Sweden

5. State Key Laboratory of Environment‐friendly Energy Materials Southwest University of Science and Technology Mianyang 621010 China

Abstract

AbstractDeveloping stable catalysts with higher selectivity and activity within a wide potential range is critical for efficiently converting CO2 to ethanol. Here, the carbon‐encapsulated CuNi nanoparticles anchored on nitrogen‐doped nanoporous graphene (CuNi@C/N‐npG) composite are designedly prepared and display the excellent CO2 reduction performance with the higher ethanol Faradaic effiency (FEethanol ≥ 60%) in a wide potential window (600 mV). The optimal cathodic energy efficiency (47.6%), Faradaic efficiency (84%), and selectivity (96.6%) are also obtained at −0.78 V versus reversible hydrogen electrode (RHE). Combining with the density functional theory (DFT) calculations, it is demonstrated that the stronger metal‐support interaction (Ni‐N‐C) can regulate the surface electronic structure effectively, boosting the electron transfer and stabilizing the active sites (Cu0‐Cuδ+) on the surface of CuNi@C/N‐npG, finally realizing the controllable transition of reaction intermediates. This work may guide the designs of electrocatalysts with highly catalytic performance for CO2 reduction to C2+ products.

Funder

Natural Science Foundation of Shandong Province

National Natural Science Foundation of China

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3