Spatio‐Temporal Electrowetting and Reaction Monitoring in Microfluidic Gas Diffusion Electrode Elucidates Mass Transport Limitations

Author:

Brosch Sebastian1ORCID,Wiesner Florian1ORCID,Decker Alexandra1,Linkhorst John12ORCID,Wessling Matthias13ORCID

Affiliation:

1. RWTH Aachen University Aachener Verfahrenstechnik ‐ Chemical Process Engineering Forckenbeckstr. 51 52074 Aachen Germany

2. Verfahrenstechnik elektrochemischer Systeme Technical University Darmstadt Otto‐Berndt‐Str. 2 64287 Darmstadt Germany

3. DWI ‐ Leibnitz Institute for Interactive Materials Forckenbeckstr. 50 52074 Aachen Germany

Abstract

AbstractThe use of gas diffusion electrodes (GDEs) enables efficient electrochemical CO2 reduction and may be a viable technology in CO2 utilization after carbon capture. Understanding the spatio‐temporal phenomena at the triple‐phase boundary formed inside GDEs remains a challenge; yet it is critical to design and optimize industrial electrodes for gas‐fed electrolyzers. Thus far, transport and reaction phenomena are not yet fully understood at the microscale, among other factors, due to a lack of experimental analysis methods for porous electrodes under operating conditions. In this work, a realistic microfluidic GDE surrogate is presented. Combined with fluorescence lifetime imaging microscopy (FLIM), the methodology allows monitoring of wetting and local pH, representing the dynamic (in)stability of the triple phase boundary in operando. Upon charging the electrode, immediate wetting leads to an initial flooding of the catalyst layer, followed by spatially oscillating pH changes. The micromodel presented gives an experimental insight into transport phenomena within porous electrodes, which is so far difficult to achieve. The methodology and proof of the spatio‐temporal pH and wetting oscillations open new opportunities to further comprehend the relationship between gas diffusion electrode properties and electrical currents originating at a given surface potential.

Funder

Horizon 2020

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3