Se‐p Orbitals Induced “Strong d–d Orbitals Interaction” Enable High Reversibility of Se‐Rich ZnSe/MnSe@C Electrode as Excellent Host for Sodium‐Ion Storage

Author:

Iqbal Sikandar12ORCID,Chishti Aadil Nabi12,Ali Muhammad12,Ali Moazzam1,Hao Youchan12,Wu Xingxing12,Huang Huiqin12,Lu Wang3,Gao Peng4,Yousaf Muhammad1ORCID,Jiang Yinzhu12

Affiliation:

1. ZJU‐Hangzhou Global Scientific and Technological Innovation Center Zhejiang University Hangzhou 310027 China

2. School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China

3. School of Material Science and Engineering Shandong University Jinan 250100 China

4. International Center for Quantum Materials and Electron Microscopy Laboratory, School of Physics Peking University Beijing 100871 China

Abstract

AbstractThe heterostructure of transition‐metal chalcogenides is a promising approach to boost alkali ion storage due to fast charge kinetics and reduction of activation energy. However, cycling performance is a paramount challenge that is suffering from poor reversibility. Herein, it is reported that Se‐rich particles can chemically interact with local hexagonal ZnSe/MnSe@C heterostructure environment, leading to effective ions insertion/extraction, enabling high reversibility. Enlightened by theoretical understanding, Se‐rich particles endow high intrinsic conductivities in term of low energy barriers (1.32 eV) compared with those without Se‐rich particles (1.50 eV) toward the sodiation process. Moreover, p orbitals of Se‐rich particles may actively participate and further increase the electronegativity that pushes the Mn d orbitals (dxy and dx2‐y2) and donate their electrons to dxz and dyz orbitals, manifesting strong d–d orbitals interaction between ZnSe and MnSe. Such fundamental interaction will adopt a well‐stable conducive electronic bridge, eventually, charges are easily transferred from ZnSe to MnSe in the heterostructure during sodiation/desodiation. Therefore, the optimized Se‐rich ZnSe/MnSe@C electrode delivered high capacity of 576 mAh g−1 at 0.1 A g−1 after 100 cycles and 384 mAh g−1 at 1 A g−1 after 2500 cycles, respectively. In situ and ex situ measurements further indicate the integrity and reversibility of the electrode materials upon charging/discharging.

Funder

Fundamental Research Funds for Central Universities of the Central South University

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3