Bimetallic Sulfide Hollow Nanocubes Heterostructure Promotes Dual Coupling of Conversion and Alloying/Dealloying Reactions to Achieve Durable Potassium‐Ion Battery Anode

Author:

Iqbal Sikandar1ORCID,Wang Lu1,Kong Zhen1,Zhai Yanjun2,Sun Xiuping1,Wang Fengbo1,Jing Zhongxin1,He Xiyu1,Mamoor Muhammad1,Xu Liqiang1ORCID

Affiliation:

1. Key Laboratory of Colloid and Interface Chemistry Ministry of Education and School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China

2. Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology Liaocheng University Liaocheng Shandong 252059 P. R. China

Abstract

AbstractConversion and alloying‐type transitional metal sulfides have attracted significant interests as anodes for Potassium‐ion batteries (PIBs) and Sodium‐ion batteries (SIBs) due to their high theoretical capacities and low cost. However, the poor conductivity, structural pulverization, and high‐volume expansions greatly limit the performance. Herein, Co1‐xS/ZnS hollow nanocube‐like heterostructure decorated on reduced graphene oxide (Co1‐xS/ZnS@rGO) composite is fabricated through convenient hydrothermal and post‐heat vulcanization techniques. This unique composite can provide a more stable conductive network and shorten the diffusion length of ions, which exhibits a remarkable initial charge capacity of 638.5 mA h g−1 at 0.1 A g−1 for SIBs and 606 mA h g−1 at 0.1 A g−1 for PIBs, respectively; It is worth noting that the composite presents remarkable long stable cycle performance in PIBs, which initially delivered 274 mA h g−1 and sustained the charge capacity up to 245 mA h g−1 at high current density of 1 A g−1 after 2000 cycles. A series of in situ/ex situ detections and first principle calculations further validate the high potassium ions adsorption ability of Co1‐xS/ZnS anode materials with high diffusion kinetics. This work will accelerate the fundamental construction of bimetallic sulfide hollow nanocubes heterostructure electrodes for energy storage applications.

Funder

Natural Science Foundation of Shandong Province

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3