Tuning the Surface Electron Accumulation Layer of In2O3 by Adsorption of Molecular Electron Donors and Acceptors

Author:

Wang Rongbin1ORCID,Schultz Thorsten12ORCID,Papadogianni Alexandra3,Longhi Elena4,Gatsios Christos1,Zu Fengshuo12ORCID,Zhai Tianshu1,Barlow Stephen45ORCID,Marder Seth R.456ORCID,Bierwagen Oliver3ORCID,Amsalem Patrick1ORCID,Koch Norbert12ORCID

Affiliation:

1. Institut für Physik and IRIS Adlershof Humboldt‐Universität zu Berlin 12489 Berlin Germany

2. Helmholtz‐Zentrum Berlin für Materialien und Energie GmbH 12489 Berlin Germany

3. Paul‐Drude‐Institut für Festkörperelektronik Leibniz‐Institut im Forschungsverbund Berlin e.V 10117 Berlin Germany

4. School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta GA 30332–0400 USA

5. Renewable and Sustainable Energy Institute University of Colorado Boulder Boulder CO 80303 USA

6. Department of Chemical and Biological Engineering and Department of Chemistry University of Colorado Boulder Boulder CO 80303 USA

Abstract

AbstractIn2O3, an n‐type semiconducting transparent transition metal oxide, possesses a surface electron accumulation layer (SEAL) resulting from downward surface band bending due to the presence of ubiquitous oxygen vacancies. Upon annealing In2O3 in ultrahigh vacuum or in the presence of oxygen, the SEAL can be enhanced or depleted, as governed by the resulting density of oxygen vacancies at the surface. In this work, an alternative route to tune the SEAL by adsorption of strong molecular electron donors (specifically here ruthenium pentamethylcyclopentadienyl mesitylene dimer, [RuCp*mes]2) and acceptors (here 2,2′‐(1,3,4,5,7,8‐hexafluoro‐2,6‐naphthalene‐diylidene)bis‐propanedinitrile, F6TCNNQ) is demonstrated. Starting from an electron‐depleted In2O3 surface after annealing in oxygen, the deposition of [RuCp*mes]2 restores the accumulation layer as a result of electron transfer from the donor molecules to In2O3, as evidenced by the observation of (partially) filled conduction sub‐bands near the Fermi level via angle‐resolved photoemission spectroscopy, indicating the formation of a 2D electron gas due to the SEAL. In contrast, when F6TCNNQ is deposited on a surface annealed without oxygen, the electron accumulation layer vanishes and an upward band bending is generated at the In2O3 surface due to electron depletion by the acceptor molecules. Hence, further opportunities to expand the application of In2O3 in electronic devices are revealed.

Funder

Deutsche Forschungsgemeinschaft

National Science Foundation

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3