Regulating d‐Band Center of Ti2C MXene Via Nb Alloying for Stable and High‐Efficient Supercapacitive Performances

Author:

Guan Yunfeng1,Cong Ye1,Zhao Rong1,Li Ke2,Li Xuanke1,Zhu Hui1,Zhang Qin1,Dong Zhijun1,Yang Nianjun345ORCID

Affiliation:

1. Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials School of Chemistry and Chemical Engineering Wuhan University of Science and Technology Wuhan 430081 China

2. School of Chemistry Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) & Advanced Materials and Bio‐Engineering Research (AMBER) Centre Trinity College Dublin Dublin Dublin 2 Ireland

3. Institute of Materials Engineering University of Siegen 57076 Siegen Germany

4. Department of Chemistry Hasselt University Agoralaan 1 – Buidling D Diepenbeek 3590 Belgium

5. IMO‐IMOMEC Hasselt University Wetenschapspark 1 Diepenbeek 3590 Belgium

Abstract

AbstractTi2C MXene with the lowest formula weight is expected to gain superior advantages in gravimetric capacitances over other heavier MXenes. Nevertheless, its poor chemical and electrochemical stability is the most fatal drawback and seriously hinders its practical applications. Herein, an alloy engineering strategy at the transition metal‐sites of Ti2C MXene is proposed. Theoretical calculations reveal that the electronic redistribution of the solid‐solution TiNbC MXene improves the electronic conductivity, induces the upward d‐band center, tailors the surface functional groups, and increases the electron loss impedance, resulting in its excellent capacitive performance and high chemical stability. The as‐prepared flexible TiNbC film delivers specific capacitance up to 381 F g−1 at a scan rate of 2 mV s−1 and excellent electrochemical stability without capacitance loss after 10000 charge/discharging cycles. This work provides a universal approach to develop high‐performance and chemically stable MXene electrodes.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3