Affiliation:
1. Department of Robotics and Mechatronics Engineering DGIST 333, Techno jungang‐daero, Hyeonpung‐eup, Dalseong‐gun Daegu 42988 Republic of Korea
2. Department of Mechanical Engineering Gachon University 1342, Seongnam‐daero, Sujeong‐gu, Seongnam‐si Gyeonggi‐do 13120 Republic of Korea
Abstract
AbstractThermally driven fiber actuators are emerging as promising tools for a range of robotic applications, encompassing soft and wearable robots, muscle function restoration, assistive systems, and physical augmentation. Yet, to realize their full potential in practical applications, several challenges, such as a high operational temperature, incorporation of intrinsic self‐sensing capabilities for closed‐loop feedback control, and reliance on bulky, intricate actuation systems, must be addressed. Here, an Ag nanoparticles‐based twisted and coiled fiber actuator that achieves a high contractile actuation of ≈36% is reported at a considerably low operational temperature of ≈83 °C based on a synergistic effect of constituent fiber elements with low glass transition temperatures. The fiber actuator can monitor its contractile actuation in real‐time based on the piezoresistive properties inherent to its Ag‐based conductive region, demonstrating its proprioceptive sensing capability. By exploiting this capability, the proprioceptive fiber actuator adeptly maintains its intended contractile behavior, even when faced with unplanned external disturbances. To demonstrate the capabilities of the fiber actuator, this study integrates it into a closed‐loop feedback‐controlled bionic arm as an artificial muscle, offering fresh perspectives on the future development of intelligent wearable devices and soft robotic systems.
Funder
Korea Medical Device Development Fund
Ministry of Trade, Industry and Energy
Ministry of Science and ICT, South Korea
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献