Parallel Aluminum‐Cobalt Oxide Nanosheet Arrays with High‐Temperature Ferromagnetism

Author:

Chen Leilei1ORCID,Huang Rong1,Ke Xiaoxing2,Yu Jin34,Zhang Tiantian1,Maurice Jean‐Luc5,Li Jiheng1,Li Kai6,Ni Lifeng3,Huang Shuzhao1,Ren Tiezhen7,He Zhanbing1ORCID

Affiliation:

1. State Key Laboratory for Advanced Metals and Materials University of Science and Technology Beijing Beijing 100083 P. R. China

2. Beijing Key Laboratory of Microstructure and Properties of Solids Faculty of Materials and Manufacturing Beijing University of Technology Beijing 100124 P. R. China

3. Shanghai Key Laboratory of Mechanics in Energy Engineering Shanghai Institute of Applied Mathematics and Mechanics School of Mechanics and Engineering Science Shanghai Frontier Science Center of Mechanoinformatics Shanghai University Shanghai 200444 P. R. China

4. Zhejiang Laboratory Hangzhou 311100 P. R. China

5. Laboratoire de Physique des Interfaces et Couches Minces (LPICM) CNRS Ecole Polytechnique Institute Polytechnique de Paris Palaiseau Cedex 91128 France

6. State Key Laboratory of Powder Metallurgy & Hunan Center for Electron Microscopy Central South University Changsha 410083 P. R. China

7. School of Chemical Engineering and Technology Xinjiang University Urumqi 830046 P. R. China

Abstract

AbstractParallel nanomaterials possess unique properties and show potential applications in industry. Whereas, vertically aligned 2D nanomaterials have plane orientations that are generally chaotic. Simultaneous control of their growth direction and spatial orientation for parallel nanosheets remains a big challenge. Here, a facile preparation of vertically aligned parallel nanosheet arrays of aluminum‐cobalt oxide is reported via a collaborative dealloying and hydrothermal method. The parallel growth of nanosheets is attributed to the lattice‐matching among the nanosheets, the buffer layer, and the substrate, which is verified by a careful transmission electron microscopy study. Furthermore, the aluminum‐cobalt oxide nanosheets exhibit high‐temperature ferromagnetism with a 919 K Curie temperature and a 5.22 emu g−1 saturation magnetization at 300 K, implying the potential applications in high‐temperature ferromagnetic fields.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3