MoS2 Nanoflowers Grown on Plasma‐Induced W‐Anchored Graphene for Efficient and Stable H2 Production Through Seawater Electrolysis

Author:

Dang Van Dien1,Putikam Raghunath2,Lin Ming‐Chang2,Wei Kung‐Hwa3ORCID

Affiliation:

1. Faculty of Biology and Environment Ho Chi Minh City University of Industry and Trade 140 Le Trong Tan Ho Chi Minh 700000 Vietnam

2. Department of Applied Chemistry Center for Interdisciplinary Molecular Science National Yang Ming Chiao Tung University Hsinchu 300 Taiwan

3. Department of Materials Science and Engineering National Yang Ming Chiao Tung University Hsinchu 30010 Taiwan

Abstract

AbstractHerein, it is found that 3D transition metal dichalcogenide (TMD)—MoS2 nanoflowers—grown on 2D tungsten oxide‐anchored graphene nanosheets (MoS2@W‐G) functions as a superior catalyst for the hydrogen evolution reaction (HER) under both acidic and alkaline conditions. The optimized weight ratio of MoS2@W‐G (MoS2:W‐G/1.5:1) in 0.5 M H2SO4 achieves a low overpotential of 78 mV at 10 mA cm–2, a small Tafel slope of 48 mV dec–1, and a high exchange current density (0.321 mA cm⁻2). Furthermore, the same MoS2@W‐G composite exhibits stable HER performance when using real seawater, with Faradaic efficiencies of 96 and 94% in acidic and alkaline media, respectively. Density functional theory calculations based on the hybrid MoS2@W‐G structure model confirm that suitable hybridization of 3D MoS2 and 2D W‐G nanosheets can lower the hydrogen adsorption: Gibbs free energy (∆GH*) from 1.89 eV for MoS2 to –0.13 eV for the MoS2@W‐G composite. The excellent HER activity of the 3D/2D hybridized MoS2@W‐G composite arises from abundance of active heterostructure interfaces, optimizing the electrical configuration, thereby accelerating the adsorption and dissociation of H2O. These findings suggest a new approach for the rational development of alternative 3D/2D TMD/graphene electrocatalysts for HER applications using seawater.

Funder

National Science and Technology Council

Kementerian Pendidikan

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3