Single Nanovesicles Tracking Reveals Their Heterogeneous Extracellular Adsorptions

Author:

Sun Hua1ORCID,Qi Huibo1,Hu Wanting1,Guan Liandi1,Xue Jianfeng1,Ai Yongjian1ORCID,Wang Yu1,Ding Mingyu1,Liang Qionglin1ORCID

Affiliation:

1. MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Laboratory of Flexible Electronics Technology Center for Synthetic and Systems Biology Department of Chemistry Tsinghua University Beijing 100084 China

Abstract

AbstractThe vigorous nanomedicine offers significant possibilities for effective therapeutics of various diseases, and nanovesicles (NVs) represented by artificial liposomes and natural exosomes and cytomembranes especially show great potential. However, their complex interactions with cells, particularly the heterogeneous extracellular adsorptions, are difficult to analyze spatiotemporally due to the transient dynamics. In this study, by single NVs tracking, the extracellular NVs adsorptions are directly observed and their heterogeneous characteristics are revealed. Briefly, plenty of NVs adsorbed on HCT116 cells are tracked and classified, and it is discovered that they exhibit various diffusion properties from different extracellular regions: stable adsorptions on the rear surface and restricted adsorptions on the front protrusion. After the hydrolysis of hyaluronic acid in the extracellular matrix by hyaluronidase, the restricted adsorptions are further weakened and manifested as dissociative adsorptions, which demonstrated reduced total NVs adsorptions from a single‐cell and single‐particle perspective. Compared with traditional static analysis, the spatiotemporal tracking and heterogeneous results not only reveal the extracellular NVs‐cell interactions but also inspire a wide variety of nanomedicine and their nano‐investigations.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3