Affiliation:
1. MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Department of Chemistry Laboratory of Flexible Electronics Technology Center for Synthetic and Systems Biology Tsinghua University‐Peking University Joint Centre for Life Sciences Tsinghua University Beijing 100084 P. R. China
2. Department of Chemistry College of Science Northeastern University Shenyang 110819 P. R. China
Abstract
AbstractHigh‐entropy alloys nanoparticles (HEANPs) are receiving extensive attention due to their broad compositional tunability and unlimited potential in bioapplication. However, developing new methods to prepare ultra‐small high‐entropy alloy nanoparticles (US‐HEANPs) faces severe challenges owing to their intrinsic thermodynamic instability. Furthermore, there are few reports on studying the effect of HEANPs in tumor therapy. Herein, the fabricated PtPdRuRhIr US‐HEANPs act as bifunctional nanoplatforms for the highly efficient treatment of tumors. The US‐HEANPs are engineered by the universal metal‐ligand cross‐linking strategy. This simple and scalable strategy is based on the aldol condensation of organometallics to form the target US‐HEANPs. The synthesized US‐HEANPs exhibit excellent peroxidase‐like (POD‐like) activity and can catalyze the endogenous hydrogen peroxide to produce highly toxic hydroxyl radicals. Furthermore, the US‐HEANPs possess a high photothermal conversion effect for converting 808 nm near‐infrared light into heat energy. In vivo and in vitro experiments demonstrated that under the synergistic effect of POD‐like activity and photothermal action, the US‐HEANPs can effectively ablate cancer cells and treat tumors. It is believed that this work not only provides a new perspective for the fabrication of HEANPs, but also opens the high‐entropy nanozymes research direction and their biomedical application.
Funder
National Natural Science Foundation of China
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
60 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献