Dissolution‐Induced Surface Reconstruction of Ni0.95Pt0.05Si/p‐Si Photocathode for Efficient Photoelectrochemical H2 Production

Author:

Zhang Haoyue12,Li Shengyang13,Xu Jing4,Sun Xianglie24,Xia Jing1,She Guangwei1ORCID,Yu Jiacheng12,Ru Changzhou12,Luo Jun24,Meng Xiangmin12,Mu Lixuan1,Shi Wensheng12

Affiliation:

1. Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China

2. University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100049 China

3. Engineered Nanosystems Group School of Science Aalto University Espoo 02150 Finland

4. Key Laboratory of Microelectronic Devices & Integrated Technology Institute of Microelectronics Chinese Academy of Sciences Beijing 10009 China

Abstract

AbstractMetal silicide/Si photoelectrodes have demonstrated significant potential for application in photoelectrochemical (PEC) water splitting to produce H2. To achieve an efficient and economical hydrogen evolution reaction (HER), a paramount consideration lies in attaining exceptional catalytic activity on the metal silicide surface with minimal use of noble metals. Here, this study presents the design and construction of a novel Ni0.95Pt0.05Si/p‐Si photocathode. Dopant segregation is used to achieve a Schottky barrier height as high as 1.0 eV and a high photovoltage of 420 mV. To achieve superior electrocatalytic activity for HER, a dissolution‐induced surface reconstruction (SR) strategy is proposed to in situ convert surface Ni0.95Pt0.05Si to highly active Pt2Si. The resulting SR Ni0.95Pt0.05Si/p‐Si photocathode exhibits excellent HER performance with an onset potential of 0.45 V (vs RHE) and a high maximum photocurrent density of 40.5 mA cm−2 and a remarkable applied bias photon‐to‐current efficiency (ABPE) of 5.3% under simulated AM 1.5 (100 mW cm−2) illumination. The anti‐corrosion silicide layer effectively protects Si, ensuring excellent stability of the SR Ni0.95Pt0.05Si/p‐Si photoelectrode. This study highlights the potential for achieving efficient PEC HER using bimetallic silicide/Si photocathodes with reduced Pt consumption, offering an auspicious perspective for the cost‐effective conversion of solar energy to chemical energy.

Funder

National Natural Science Foundation of China

Youth Innovation Promotion Association of the Chinese Academy of Sciences

National Key Research and Development Program of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3