Affiliation:
1. Department of Materials Science and Engineering City University of Hong Kong Kowloon Hong Kong SAR 999077 China
2. School of Microelectronics University of Science and Technology of China Hefei Anhui 230026 China
3. Department of Chemical Engineering and Biotechnology National Taipei University of Technology (Taipei Tech) Taipei 10608 Taiwan
4. Department of Materials Science State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200433 China
Abstract
AbstractHydrogen, produced through a zero‐pollution, sustainable, low‐cost, and high‐efficiency process, is regarded as the “ultimate energy” of the 21st century. Solar water‐splitting techniques have immense potential to make the idea a reality. Two promising approaches, photovoltaic‐electrolysis (PV‐EC) and photoelectrochemistry (PEC), have demonstrated solar‐to‐hydrogen conversion efficiency over 10%, which is the minimum required for competitively priced, large‐scale systems. Extensive studies of PV‐EC and PEC devices reported within the past five decades show increasing design complexity. To accurately describe the gap between laboratory research and practical application, the basic principles and concepts of PV‐EC and PEC are elaborated and clarified. The history of these developments is systematically summarized, and a comprehensive techno‐economic analysis of PV‐EC and PEC solar hydrogen production of 10 000 kg H2 day−1 is performed. The analysis shows that no solar hydrogen system is currently competitive with production methods based on fossil fuels, but the development of high‐efficiency water‐splitting electrolyzers with cost‐competitive components (especially for cation/anion exchange membranes) can accelerate progress.
Subject
General Materials Science,Renewable Energy, Sustainability and the Environment
Cited by
70 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献