Achieving Fast and Stable Sodium Storage in Na4Fe3(PO4)2(P2O7) via Entropy Engineering

Author:

Jiang Ning12,Wang Xinyu12,Zhou Haoran1,Wang Yichao12,Sun Shouyu12,Yang Cheng1,Liu Yu1ORCID

Affiliation:

1. Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 China

2. University of Chinese Academy of Sciences Beijing 100049 China

Abstract

AbstractNa4Fe3(PO4)2(P2O7) (NFPP) has been considered a promising cathode material for sodium‐ion batteries (SIBs) owing to its environmental friendliness and economic viability. However, its electrochemical performance is constrained by connatural low electronic conductivity and inadequate sodium ion diffusion. Herein, a high‐entropy substitution strategy is employed in NFPP to address these limitations. Ex situ X‐ray diffraction analysis reveals a single‐phase electrochemical reaction during the sodiation/desodiation processes and the increased configurational entropy in HE‐NFPP endows an enhanced structure, which results in a minimal volume variation of only 1.83%. Kinetic analysis and density functional theory calculation further confirm that the orbital hybrid synergy of high‐entropy transition metals offers a favorable electronic structure, which efficaciously boosts the charge transfer kinetics and optimizes the sodium ion diffusion channel. Based on this versatile strategy, the as‐prepared high‐entropy Na4Fe2.5Mn0.1Mg0.1Co0.1Ni0.1Cu0.1(PO4)2(P2O7) (HE‐NFPP) cathode can deliver a prominent rate performance of 55 mAh g−1 at 10 A g−1 and an ultra‐long cycling lifespan of over 18 000 cycles at 5 A g−1. When paired with a hard carbon (HC) anode, HE‐NFPP//HC full cell exhibits a favorable cycling durability of 1000 cycles. This high‐entropy engineering offers a feasible route to improve the electrochemical performance of NFPP and provides a blueprint for exploring high‐performance SIBs.

Funder

National Natural Science Foundation of China

National Ten Thousand Talent Program

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3