Hybrid Cellular Nanovesicles Block PD‐L1 Signal and Repolarize M2 Macrophages for Cancer Immunotherapy

Author:

Zhao Chenchen12,Pan Yuanwei2,Liu Lujie2,Zhang Jing12,Wu Xianjia12,Liu Yu23,Zhao Xing‐Zhong1,Rao Lang2ORCID

Affiliation:

1. Key Laboratory of Artificial Micro‐ and Nano‐Structures of Ministry of Education School of Physics and Technology Wuhan University Wuhan 430072 China

2. Institute of Biomedical Health Technology and Engineering Shenzhen Bay Laboratory Shenzhen 518132 China

3. Department of Dermatovenereology The Seventh Affiliated Hospital Sun Yat‐sen University Shenzhen 518107 China

Abstract

AbstractThe PD1/PD‐L1 immune checkpoint blocking is a promising therapy, while immunosuppressive tumor microenvironment (TME) and poor tumor penetration of therapeutic antibodies limit its efficacy. Repolarization of tumor‐associated macrophages (TAMs) offers a potential method to ameliorate immunosuppression of TME and further boost T cell antitumor immunity. Herein, hybrid cell membrane biomimetic nanovesicles (hNVs) are developed by fusing M1 macrophage‐derived nanovesicles (M1‐NVs) and PD1‐overexpressed tumor cell‐derived nanovesicles (PD1‐NVs) to improve cancer immunotherapy. The M1‐NVs promote the transformation of M2‐like TAMs to M1‐like phenotype and further increase the release of pro‐inflammatory cytokines, resulting in improved immunosuppressive TME. Concurrently, the PD1‐NVs block PD1/PD‐L1 pathway, which boosts cancer immunotherapy when combined with M1‐NVs. In a breast cancer mouse model, the hNVs efficiently accumulate at the tumor site after intravenous injection and significantly inhibit the tumor growth. Mechanically, the M1 macrophages and CD8+ T lymphocytes in TME increase by twofold after the treatment, indicating effective immune activation. These results suggest the hNVs as a promising strategy to integrate TME improvement with PD1/PD‐L1 blockade for cancer immunotherapy.

Funder

National Natural Science Foundation of China

Shenzhen Science and Technology Innovation Program

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3