Direct Z‐Scheme Heterostructure of Vertically Oriented SnS2 Nanosheet on BiVO4 Nanoflower for Self‐Powered Photodetectors and Water Splitting

Author:

Ma Nan1,Lu Chunhui1,Liu Yuqi1,Han Taotao1,Dong Wen1,Wu Dan1,Xu Xinlong1ORCID

Affiliation:

1. Shaanxi Joint Lab of Graphene State Key Laboratory of Photon‐Technology in Western China Energy International Collaborative Center on Photoelectric Technology and Nano Functional Materials Institute of Photonics and Photon‐Technology School of Physics Northwest University Xi'an 710069 China

Abstract

AbstractThe construction of nanostructured Z‐scheme heterostructure is a powerful strategy for realizing high‐performance photoelectrochemical (PEC) devices such as self‐powered photodetectors and water splitting. Considering the band structure and internal electric field direction, BiVO4 is a promising candidate to construct SnS2‐based heterostructure. Herein, the direct Z‐scheme heterostructure of vertically oriented SnS2 nanosheet on BiVO4 nanoflower is rationally fabricated for efficient self‐powered PEC photodetectors. The Z‐scheme heterostructure is identified by ultraviolet photoelectron spectroscopy, photoluminescence spectroscopy, PEC measurement, and water splitting. The SnS2/BiVO4 heterostructure shows a superior photodetection performance such as excellent photoresponsivity (10.43 mA W−1), fast response time (6 ms), and long‐term stability. Additionally, by virtue of efficient Z‐scheme charge transfer and unique light‐trapping nanostructure, the SnS2/BiVO4 heterostructure also displays a remarkable photocatalytic hydrogen production rate of 54.3 µmol cm−2 h−1 in Na2SO3 electrolyte. Furthermore, the synergistic effect between photo‐activation and bias voltage further improves the PEC hydrogen production rate of 360 µmol cm−2 h−1 at 0.8 V, which is an order of magnitude above the BiVO4. The results provide useful inspiration for designing direct Z‐scheme heterostructures with special nanostructured morphology to signally promote the performance of PEC devices.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3