Affiliation:
1. Shaanxi Joint Lab of Graphene State Key Laboratory of Photon‐Technology in Western China Energy International Collaborative Center on Photoelectric Technology and Nano Functional Materials Institute of Photonics & Photon‐Technology School of Physics Northwest University Xi'an 710069 China
Abstract
AbstractInspired by natural photosynthesis, the visible‐light‐driven Z‐scheme system is very effective and promising for boosting photocatalytic hydrogen production and pollutant degradation. Here, a synergistic Z‐scheme photocatalyst is constructed by coupling ReS2 nanosheet and ZnIn2S4 nanoflower and the experimental evidence for this direct Z‐scheme heterostructure is provided by X‐ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, and electron paramagnetic resonance. Consequently, such a unique nanostructure makes this Z‐scheme heterostructure exhibit 23.7 times higher photocatalytic hydrogen production than that of ZnIn2S4 nanoflower. Moreover, the ZnIn2S4/ReS2 photocatalyst is also very stable for photocatalytic hydrogen evolution, almost without activity decay even storing for two weeks. Besides, this Z‐scheme heterostructure also exhibits superior photocatalytic degradation rates of methylene blue (1.7 × 10−2 min−1) and mitoxantrone (4.2 × 10−3 min−1) than that of ZnIn2S4 photocatalyst. The ultraviolet–visible absorption spectra, transient photocurrent spectra, open‐circuit potential measurement, and electrochemical impedance spectroscopy reveal that the superior photocatalytic performance of ZnIn2S4/ReS2 heterostructure is mostly attributed to its broad and strong visible‐light absorption, effective separation of charge carrier, and improved redox ability. This work provides a promising nanostructure design of a visible‐light‐driven Z‐scheme heterostructure to simultaneously promote photocatalytic reduction and oxidation activity.
Funder
National Natural Science Foundation of China