Unravelling the Photoelectrochemical Water Splitting of Nanometer‐Thick Carbon Nitride Layer

Author:

Zhi Fengmei1,Wu Suqin12,Lai Chen1,He Mao1,Deng Wenjie1,Zhang Dexu1,Peng Xiaoying1,Wu Qizheng1,Xia Jiawei3,Lu Zhang‐Hui1,Wang Mingzhan4,Zhang Wei‐Guang2,Xu Jingsan5,Liu Chong4,Peng Guiming1ORCID

Affiliation:

1. College of Chemistry and Chemical Engineering National Engineering Research Center for Carbonhydrate Synthesis Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education Jiangxi Normal University Nanchang 330022 China

2. GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals School of Chemistry South China Normal University Guangzhou 510006 China

3. Key Laboratory of Advanced Catalytic Materials and Technology Advanced Catalysis and Green Manufacturing Collaborative Innovation Center Changzhou University Changzhou 213164 China

4. Pritzker School of Molecular Engineering University of Chicago Chicago IL 60637 USA

5. School of Chemistry Physics and Mechanical Engineering Queensland University of Technology Brisbane Queensland 4001 Australia

Abstract

AbstractMatching the thickness of the graphitic carbon nitride (CN) nanolayer with the charge diffusion length is expected to compensate for the poor intrinsic conductivity and charge recombination in CN for photoelectrochemical cells (PEC). Herein, the compact CN nanolayer with tunable thickness is in situ coated on carbon fibers. The compact packing along with good contact with the substrate improves the electron transport and alleviates the charge recombination. The PEC investigation shows CN nanolayer of 93 nm‐thick yields an optimum photocurrent of 116 µA cm−2 at 1.23 V versus RHE, comparable to most micrometer‐thick CN layers, with a low onset potential of 0.2 V in 1 m KOH under 1 sun illumination. This optimum performance suggests the electron diffusion length matches with the thickness of the CN nanolayer. Further deposition of NiFe‐layered double hydroxide enhanced the surface water oxidation kinetics, delivering an improved photocurrent of 210 µA cm−2 with IPCE of 12.8% at 400 nm. The CN nanolayer also shows extended potential in PEC organic synthesis. This work experimentally reveals the PEC behavior of the nanometer‐thick CN layer, providing new insights into CN in the application of energy and environment‐related fields.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangxi Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3