Molecular Engineering of Rylene Diimides via Sila‐Annulation Toward High‐Mobility Organic Semiconductors

Author:

Xue Ning1,Chen Kai2,Liu Guogang2,Wang Zhaohui1,Jiang Wei1ORCID

Affiliation:

1. Key Laboratory of Organic Optoelectronics and Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 P. R. China

2. Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 P. R. China

Abstract

AbstractThe continuous innovation of captivating new organic semiconducting materials remains pivotal in the development of high‐performance organic electronic devices. Herein, a molecular engineering by combining sila‐annulation with the vertical extension of rylene diimides (RDIs) toward high‐mobility organic semiconductors is presented. The unilateral and bilateral sila‐annulated quaterrylene diimides (Si‐QDI and 2Si‐QDI) are designed and synthesized. In particular, the symmetrical bilateral 2Si‐QDI exhibits a compact, 1D slipped ππ stacking arrangement through the synergistic combination of a sizable π‐conjugated core and intercalating alkyl chains. Combining the appreciable elevated HOMO levels and reduced energy gaps, the single‐crystalline organic field‐effect transistors (SC‐OFETs) based on 2Si‐QDI demonstrate exceptional ambipolar transport characteristics with an impressive hole mobility of 3.0 cm2 V−1 s−1 and an electron mobility of 0.03 cm2 V−1 s−1, representing the best ampibolar SC‐OFETs based on RDIs. Detailed theoretical calculations rationalize that the larger transfer integral along the ππ stacking direction is responsible for the achievement of the superior charge transport. This study showcases the remarkable potential of sila‐annulation in optimizing carrier transport performances of polycyclic aromatic hydrocarbons (PAHs).

Funder

Natural Science Foundation of Shandong Province

National Postdoctoral Program for Innovative Talents

National Natural Science Foundation of China

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3