Ultrahigh Piezocatalytic Performance of Perovskite Ferroelectric Powder via Oxygen Vacancy Engineering

Author:

Liu Xuechen1,Wang Mingwen1,Zhou Yuanyi2,Li Tao3,Duan Hongxu3,Li Jinglei1,Wang Linghang1,Li Yang1,Yang Shuai1,Wu Jie1,Wang Chao1,Feng Xinya1,Li Fei1ORCID

Affiliation:

1. Electronic Materials Research Laboratory Key Laboratory of the Ministry of Education and State Key Laboratory for Mechanical Behavior of Materials School of Electronic and Information Engineering Xi'an Jiaotong University Xi'an 710049 China

2. The Fifth Affiliated Hospital of Jinan University Heyuan 517000 China

3. Center for Spintronics and Quantum Systems State Key Laboratory for Mechanical Behavior of Materials Department of Materials Science and Engineering Xi'an Jiaotong University Xi'an 710049 China

Abstract

AbstractPiezocatalysis has increasingly gained prominence due to its enormous potential for addressing energy shortages and environmental pollution issues. Nonetheless, the low piezocatalytic activity of state‐of‐the‐art materials seriously inhibits the practical applications of piezocatalysis. Here, it is proposed to greatly enhance the piezocatalytic activity for a perovskite ferroelectric, i.e., Sm‐doped 0.68Pb(Mg1/3Nb2/3)‐0.32PbTiO3 (Sm‐PMN‐PT, a solid solution with ultrahigh piezoelectricity), by introducing oxygen vacancies (OVs). The results show that the presence of OVs promotes the production of reactive oxygen species while enhancing the adsorption and activation of organic pollutants to improve piezocatalytic performance. The OV‐Sm‐PMN‐PT is found to possess a superior piezocatalytic degradation rate constant of 0.073 min−1 under ultrasonic vibration, which is ≈4.9 times higher than that of pristine Sm‐PMN‐PT. Furthermore, the OV‐Sm‐PMN‐PT can efficiently remove RhB under 400 rpm stirring, making it a promising candidate for water purification using low‐frequency mechanical energy from nature. This research sheds light on the design of piezocatalytic materials via defect engineering.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3