Affiliation:
1. NanoElectrochemistry Laboratory Graduate Institute of Applied Science and Technology National Taiwan University of Science and Technology Taipei 106 Taiwan
2. National Synchrotron Radiation Research Center Hsinchu 30076 Taiwan
3. Department of Chemical Engineering National Taiwan University of Science and Technology Taipei 10607 Taiwan
4. Sustainable Electrochemical Energy Development Center National Taiwan University of Science and Technology Taipei 10607 Taiwan
Abstract
AbstractDespite the unique advantages of single‐atom catalysts, molecular dual‐active sites facilitate the C‐C coupling reaction for C2 products toward the CO2 reduction reaction (CO2RR). The Ni/Cu proximal dual‐active site catalyst (Ni/Cu‐PASC) is developed, which is a harmonic catalyst with dual‐active sites, by simply mixing commercial Ni‐phthalocyanine (Ni‐Pc) and Cu‐phthalocyanine (Cu‐Pc) molecules physically. According to scanning transmission electron microscopy (STEM) and transmission electron microscopy (TEM) energy dispersive spectroscopy (EDS) data, Ni and Cu atoms are separated, creating dual‐active sites for the CO2RR. The Ni/Cu‐PASC generates ethanol with an FE of 55%. Conversely, Ni‐Pc and Cu‐Pc have only detected single‐carbon products like CO and HCOO−. In situ X‐ray absorption spectroscopy (XAS) indicates that CO generation is caused by the stable Ni active site's balanced electronic state. The CO production from Ni‐Pc consistently increased the CO concentration over Cu sites attributed to subsequent reduction reaction through a C‐C coupling on nearby Cu. The CO bound (HCOO−) peak, which can be found on Cu‐Pc, vanishes on Ni/Cu‐PASC, as shown by in situ fourier transformation infrared (FTIR). The characteristic intermediate of *CHO instead of HCOO− proves to be the prerequisite for multi‐carbon products by electrochemical CO2RR. The work demonstrates that the harmonic dual‐active sites in Ni/Cu‐PASC can be readily available by the cascading proximal active Ni‐ and Cu‐Pc sites.
Funder
Kementerian Pendidikan
Academia Sinica
National Science and Technology Council
Subject
Biomaterials,Biotechnology,General Materials Science,General Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献