Breaking K+ Concentration Limit on Cu Nanoneedles for Acidic Electrocatalytic CO2 Reduction to Multi‐Carbon Products

Author:

Zi Xin1,Zhou Yajiao1,Zhu Li2,Chen Qin1,Tan Yao1,Wang Xiqing1,Sayed Mahmoud3,Pensa Evangelina2,Geioushy Ramadan A.4,Liu Kang1,Fu Junwei1,Cortés Emiliano2ORCID,Liu Min1

Affiliation:

1. Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics Central South University Changsha 410083, Hunan P. R. China

2. Nanoinstitut München, Fakultät für Physik Ludwig-Maximilians-Universität München 80539 München Germany

3. Chemistry Department, Faculty of Science Fayoum University Fayoum 63514 Egypt

4. Central Metallurgical Research and Development Institute, CMRDI P.O. Box: 87 Helwan 11421, Cairo Egypt

Abstract

AbstractElectrocatalytic CO2 reduction reaction (CO2RR) to multi‐carbon products (C2+) in acidic electrolyte is one of the most advanced routes for tackling our current climate and energy crisis. However, the competing hydrogen evolution reaction (HER) and the poor selectivity towards the valuable C2+ products are the major obstacles for the upscaling of these technologies. High local potassium ions (K+) concentration at the cathode's surface can inhibit proton‐diffusion and accelerate the desirable carbon‐carbon (C−C) coupling process. However, the solubility limit of potassium salts in bulk solution constrains the maximum achievable K+ concentration at the reaction sites and thus the overall acidic CO2RR performance of most electrocatalysts. In this work, we demonstrate that Cu nanoneedles induce ultrahigh local K+ concentrations (4.22 M) – thus breaking the K+ solubility limit (3.5 M) – which enables a highly efficient CO2RR in 3 M KCl at pH=1. As a result, a Faradaic efficiency of 90.69±2.15 % for C2+ (FEC2+) can be achieved at 1400 mA.cm−2, simultaneous with a single pass carbon efficiency (SPCE) of 25.49±0.82 % at a CO2 flow rate of 7 sccm.

Funder

National Natural Science Foundation of China

Deutsche Forschungsgemeinschaft

H2020 European Research Council

Publisher

Wiley

Subject

General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3