Versatile Patterning of Liquid Metal via Multiphase 3D Printing

Author:

Patil Dhanush1ORCID,Liu Siying1,Ravichandran Dharneedar1ORCID,Thummalapalli Sri Vaishnavi2ORCID,Zhu Yuxiang1,Tang Tengteng3,Golan Yuval45ORCID,Miquelard‐Garnier Guillaume6ORCID,Asadi Amir7,Li Xiangjia3ORCID,Chen Xiangfan1ORCID,Song Kenan18ORCID

Affiliation:

1. School of Manufacturing Systems and Networks (MSN) Ira Fulton Schools of Engineering Arizona State University Mesa AZ 85212 USA

2. College of Engineering University of Georgia 302 E. Campus Rd Athens GA 30602 USA

3. The School for Engineering of Matter Transport and Energy (SEMTE) Ira Fulton Schools of Engineering Arizona State University Tempe AZ 85281 USA

4. Department of Materials Engineering Ben‐Gurion University of the Negev Beer‐Sheva 8410501 Israel

5. Ilse Katz Institute for Nanoscale Science and Technology Ben‐Gurion University of the Negev Beer‐Sheva 8410501 Israel

6. Laboratoire PIMM CNRS Arts at Métiers Institute of Technology Cnam HESAM Universite 151 Boulevard de l'Hopital Paris 75013 France

7. Department of Engineering Technology and Industrial Distribution Texas A&M University College Station TX 77843‐3367 USA

8. School of Environmental Civil Agricultural and Mechanical (ECAM) University of Georgia Athens GA 30602 USA

Abstract

AbstractThis paper presents a scalable and straightforward technique for the immediate patterning of liquid metal/polymer composites via multiphase 3D printing. Capitalizing on the polymer's capacity to confine liquid metal (LM) into diverse patterns. The interplay between distinctive fluidic properties of liquid metal and its self‐passivating oxide layer within an oxidative environment ensures a resilient interface with the polymer matrix. This study introduces an inventive approach for achieving versatile patterns in eutectic gallium indium (EGaIn), a gallium alloy. The efficacy of pattern formation hinges on nozzle's design and internal geometry, which govern multiphase interaction. The interplay between EGaIn and polymer within the nozzle channels, regulated by variables such as traverse speed and material flow pressure, leads to periodic patterns. These patterns, when encapsulated within a dielectric polymer polyvinyl alcohol (PVA), exhibit an augmented inherent capacitance in capacitor assemblies. This discovery not only unveils the potential for cost‐effective and highly sensitive capacitive pressure sensors but also underscores prospective applications of these novel patterns in precise motion detection, including heart rate monitoring, and comprehensive analysis of gait profiles. The amalgamation of advanced materials and intricate patterning techniques presents a transformative prospect in the domains of wearable sensing and comprehensive human motion analysis.

Funder

Air Force Office of Scientific Research

Arizona Biomedical Research Commission

American Chemical Society Petroleum Research Fund

Bonfils-Stanton Foundation

Office of Naval Research Global

National Science Foundation

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3