Sn‐Ag Synergistic Effect Enhances High‐Rate Electrocatalytic CO2‐to‐Formate Conversion on Porous Poly(Ionic Liquid) Support

Author:

Duan Xiu‐Qiang12,Duan Guo‐Yi23,Wang Yao‐Feng2,Li Xiao‐Qiang2,Wang Rui2,Zhang Rui14,Xu Bao‐Hua23ORCID

Affiliation:

1. State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai 200237 China

2. Beijing Key Laboratory of Ionic Liquids Clean Process CAS Key Laboratory of Green Process and Engineering State Key Laboratory of Multiphase Complex Systems Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 China

3. Beijing Key Laboratory for Chemical Power Source and Green Catalysis School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China

4. Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China

Abstract

AbstractThe electrocatalytic transformation of carbon dioxide (CO2) to formate is a promising route for highly efficient conversion and utilization of CO2 gas, due to the low production cost and the ease of storage of formate. In this work, porous poly(ionic liquid) (PPIL)‐based tin‐silver (Sn‐Ag) bimetallic hybrids (PPILm‐SnxAg10‐x) are prepared for high‐performance formate electrolytic generation. Under optimal conditions, an excellent formate Faradaic efficiency of 95.5% with a high partial current density of 214.9 mA cm−2 is obtained at −1.03 V (vs reversible hydrogen electrode). Meanwhile, the high selectivity of formate (>≈83%) is maintained in a wide potential range (>630 mV). Mechanistic studies demonstrate that the presence of Ag‐species is vital for the formation, maintenance, and high dispersion of tetravalent Sn(IV)‐species, which accounts for the active sites for CO2‐to‐formate conversion. Further, the introduction of Ag‐species significantly enhances the activity by increasing the electron density near the Fermi energy level.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3