Hierarchically Templated Synthesis of 3D‐Printed Crosslinked Cyclodextrins for Lycopene Harvesting

Author:

Zhang Mingshi1,Liu Wenxing1,Lin Qianming1,Ke Chenfeng1ORCID

Affiliation:

1. Department of Chemistry Dartmouth College 41 College Street Hanover NH 03755 USA

Abstract

AbstractPlants produce a wide range of bioactive phytochemicals, such as antioxidants and vitamins, which play crucial roles in aging prevention, inflammation reduction, and reducing the risk of cancer. Selectively harvesting these phytochemicals, such as lycopene, from tomatoes through the adsorption method is cost‐effective and energy efficient. In this work, a templated synthesis of 3D‐printed crosslinked cyclodextrin polymers featuring nanotubular structures for highly selective lycopene harvesting is reported. Polypseudorotaxanes formed by triethoxysilane‐based telechelic polyethylene glycols and α‐cyclodextrins (α‐CDs) are designed as the template to (1) synthetically access urethane‐based nanotubular structures at the molecular level, and (2) construct 3D‐printed architectures with designed macroscale voids. The polypseudorotaxane hydrogels showed good rheological properties for direct ink writing, and the 3D‐printed hydrogels were converted to the desired α‐CD polymer network through a three‐step postprinting transformation. The obtained urethane‐crosslinked α‐CD monoliths possess nanotubular structures and 3D‐printed voids. They selectively adsorb lycopene from raw tomato juice, protecting lycopene from photo‐ or thermo‐degradations. This work highlights the hierarchically templated synthesis approach in developing functional 3D‐printing materials by connecting the bottom‐up molecular assembly and synthesis with the top‐down 3D architecture control and fabrication.

Funder

U.S. Department of Energy

Basic Energy Sciences

National Science Foundation

Research Corporation for Science Advancement

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3