Affiliation:
1. Department of Photonics and Nanoelectronics Hanyang University Ansan 15588 Republic of Korea
2. BK21 FOUR ERICA‐ACE Center Hanyang University Ansan 15588 Republic of Korea
3. Korea Basic Science Insititute (Seoul) Seoul 02841 Republic of Korea
4. Department of Polymer Science and Engineering and Program in Environmental and Polymer Engineering Inha University Incheon 22212 Republic of Korea
Abstract
AbstractThe branched network‐driven ion solvating quasi‐solid polymer electrolytes (QSPEs) are prepared via one‐step photochemical reaction. A poly(ethylene glycol diacrylate) (PEGDA) is combined with an ion‐conducting solvate ionic liquid (SIL), where tetraglyme (TEGDME), which acts like interneuron in the human brain and creates branching network points, is mixed with EMIM‐NTf2 and Li‐NTf2. The QSPE exhibits a unique gyrified morphology, inspired by the cortical surface of human brain, and features well‐refined nano‐scale ion channels. This human‐mimicking method offers excellent ion transport capabilities through a synaptic branched network with high ionic conductivity (σDC ≈ 1.8 mS cm−1 at 298 K), high dielectric constant (εs ≈ 125 at 298 K), and strong ion solvation ability, in addition to superior mechanical flexibility. Furthermore, the interdigitated microsupercapacitors (MSCs) based on the QSPE present excellent electrochemical performance of high energy (E = 5.37 µWh cm−2) and power density (P = 2.2 mW cm−2), long‐term cycle stability (≈94% retention after 48 000 cycles), and mechanical stability (>94% retention after continuous bending and compressing deformation). Moreover, these MSC devices have flame‐retarding properties and operate effectively in air and water across a wide temperature range (275 to 370 K), offering a promising foundation for high‐performance, stable next‐generation all‐solid‐state energy storage devices.
Funder
Ministry of Science and ICT, South Korea
Korea Basic Science Institute