Fixed‐Point Atomic Regulation Engineered Low‐Thickness Wideband Microwave Absorption

Author:

Qian Yuetong1,Wu Zhengchen2,Lv Xiaowei2,Huang Mengqiu2,Rao Longjun2,Wang Lei23,Lai Yuxiang4,Zhang Jincang15,Che Renchao256ORCID

Affiliation:

1. Materials Genome Institute Shanghai University Shanghai 200444 China

2. Laboratory of Advanced Materials Shanghai Key Lab of Molecular Catalysis and Innovative Materials Academy for Engineering & Technology Fudan University Shanghai 200438 China

3. School of Materials Science and Engineering Shanghai Institute of Technology Shanghai 201418 China

4. Pico Electron Microscopy Center Innovation Institute for Ocean Materials Characterization Center for Advanced Studies in Precision Instruments Hainan University Haikou 570228 China

5. Zhejiang Laboratory Hangzhou 311100 P. R. China

6. College of Physics Donghua University Shanghai 201620 China

Abstract

AbstractAtomic doping is widely employed to fine‐tune crystal structures, energy band structures, and the corresponding electrical properties. However, due to the difficulty in precisely regulating doping sites and concentrations, establishing a relationship between electricity properties and doping becomes a huge challenge. In this work, a modulation strategy on A‐site cation dopant into spinel‐phase metal sulfide Co9S8 lattice via Fe and Ni elements is developed to improve the microwave absorption (MA) properties. At the atomic scale, accurately controlling doped sites can introduce local lattice distortions and strain concentration. Tunned electron energy redistribution of the doped Co9S8 strengthens electron interactions, ultimately enhancing the high‐frequency dielectric polarization (ɛ′ from 10.5 to 12.5 at 12 GHz). For the Fe‐doped Co9S8, the effective absorption bandwidth (EAB) at 1.7 mm increases by 5%, and the minimum reflection loss (RLmin) improves by 26% (EAB = 5.8 GHz, RLmin = −46 dB). The methodology of atomic‐scale fixed‐point doping presents a promising avenue for customizing the dielectric properties of nanomaterials, imparting invaluable insights for the design of cutting‐edge high‐performance microwave absorption materials.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3