A Novel Ultra‐Wideband Electromagnetic‐Wave‐Absorbing Metastructure Inspired by Bionic Gyroid Structures

Author:

An Qing1,Li Dawei1ORCID,Liao Wenhe1,Liu Tingting1,Joralmon Dylan2,Li Xiangjia2,Zhao Junming3

Affiliation:

1. School of Mechanical Engineering (SME) Nanjing University of Science and Technology 200 Xiao Ling Wei Road Nanjing 210094 China

2. Department of Aerospace and Mechanical Engineering School for Engineering of Matter Transport and Energy Arizona State University 501 E. Tyler Mall Tempe AZ 85287 USA

3. School of Electronic Science and Engineering Nanjing University Nanjing 210023 China

Abstract

AbstractTraditional honeycomb‐like structural electromagnetic (EM)‐wave‐absorbing materials have been widely used in various equipment as multifunctional materials. However, current EM‐wave‐absorbing materials are limited by narrow absorption bandwidths and incidence angles because of their anisotropic structural morphology. The work presented here proposes a novel EM‐wave‐absorbing metastructure with an isotropic morphology inspired by the gyroid microstructures seen in Parides sesostris butterfly wings. A matching redesign methodology between the material and subwavelength scale properties of the gyroid microstructure is proposed, inspired by the interaction mechanism between the microstructure and the material properties on the EM‐wave‐absorption performance of the prepared metastructure. The bioinspired metastructure is fabricated by additive manufacturing (AM) and subsequent coating through dipping processes, filled with dielectric lossy materials. Based on simulations and experiments, the metastructure designed in this work exhibits an ultrawide absorption bandwidth covering the frequency range of 2–40 GHz with a fractional bandwidth of 180% at normal incidence. Moreover, the metastructure has a stable frequency response when the incident angle is 60° under transverse electric (TE) and transverse magnetic (TM) polarization. Finally, the synergistic mechanism between the microstructure and the material is elucidated, which provides a new paradigm for the design of novel ultra‐broadband EM‐absorbing materials.

Funder

Natural Science Foundation of Jiangsu Province

National Natural Science Foundation of China

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3