Superior Thermoelectric Performance of SiGe Nanowires Epitaxially Integrated into Thermal Micro‐Harvesters

Author:

Sojo‐Gordillo Jose Manuel1ORCID,Sierra Carolina Duque1ORCID,Gadea Diez Gerard1ORCID,Segura‐Ruiz Jaime2ORCID,Bonino Valentina2,Nuñez Eroles Marc1ORCID,Gonzalez‐Rosillo Juan Carlos1ORCID,Estrada‐Wiese Denise3ORCID,Salleras Marc3ORCID,Fonseca Luis3,Morata Alex1ORCID,Tarancón Albert14ORCID

Affiliation:

1. Department of Advanced Materials Catalonia Institute for Energy Research (IREC) Jardins de Les Dones de Negre 1, Sant Adrià de Besòs Barcelona 08930 Spain

2. Beamline ID‐16B ESRF: The European Synchrotron 71, Avenue des Martyr Grenoble 38043 France

3. Institute of Microelectronics of Barcelona IMB‐CNM (CSIC) C/Til⋅lers s/n (Campus UAB), Bellaterra Barcelona 08193 Spain

4. Catalan Institution for Research and Advanced Studies (ICREA) Passeig Lluís Companys 23 Barcelona 08010 Spain

Abstract

AbstractSemiconductor nanowires have demonstrated fascinating properties with applications in a wide range of fields, including energy and information technologies. Particularly, increasing attention has focused on SiGe nanowires for applications in a thermoelectric generation. In this work, a bottom‐up vapour‐liquid‐solid chemical vapour Deposition methodology is employed to integrate heavily boron‐doped SiGe nanowires on thermoelectric generators. Thermoelectrical properties –, i.e., electrical and thermal conductivities and Seebeck coefficient – of grown nanowires are fully characterized at temperatures ranging from 300 to 600 K, allowing the complete determination of the Figure‐of‐merit, zT, with obtained values of 0.4 at 600 K for optimally doped nanowires. A correlation between doping level, thermoelectric performance, and elemental distribution is established employing advanced elemental mapping (synchrotron‐based nano‐X‐ray fluorescence). Moreover, the operation of p‐doped SiGe NWs integrated into silicon micromachined thermoelectrical generators is shown over standalone and series‐ and parallel‐connected arrays. Maximum open circuit voltage of 13.8 mV and power output as high as 15.6 µW cm−2 are reached in series and parallel configurations, respectively, operating upon thermal gradients generated with hot sources at 200 °C and air flows of 1.5 m s−1. These results pave the way for direct application of SiGe nanowire‐based micro‐thermoelectric generators in the field of the Internet of Things.

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3