Functional Tailoring of Multi‐Dimensional Pure MXene Nanostructures for Significantly Accelerated Electromagnetic Wave Absorption

Author:

Zeng Xiaojun1ORCID,Zhao Chao1,Jiang Xiao1,Yu Ronghai2,Che Renchao3ORCID

Affiliation:

1. Advanced Ceramic Materials Research Institute School of Materials Science and Engineering Jingdezhen Ceramic University Jingdezhen 333403 China

2. School of Materials Science and Engineering Beihang University Beijing 100191 China

3. Laboratory of Advanced Materials Shanghai Key Lab of Molecular Catalysis and Innovative Materials Department of Materials Science Fudan University Shanghai 200438 China

Abstract

AbstractTransition metal carbide (Ti3C2Tx MXene), with a large specific surface area and abundant surface functional groups, is a promising candidate in the family of electromagnetic wave (EMW) absorption. However, the high conductivity of MXene limits its EMW absorption ability, so it remains a challenge to obtain outstanding EMW attenuation ability in pure MXene. Herein, by integrating HF etching, KOH shearing, and high‐temperature molten salt strategies, layered MXene (L‐MXene), network‐like MXene nanoribbons (N‐MXene NRs), porous MXene monolayer (P‐MXene ML), and porous MXene layer (P‐MXene L) are rationally constructed with favorable microstructures and surface states for EMW absorption. HF, KOH, and KCl/LiCl are used to functionalize MXene to tune its microstructure and surface state (F, OH, and Cl terminals), thereby improving the EMW absorption capacity of MXene‐based nanostructures. Impressively, with the unique structure, proper electrical conductivity, large specific surface area, and abundant porous defects, MXene‐based nanostructures achieve good impedance matching, dipole polarization, and conduction loss, thus inheriting excellent EMW absorption performance. Consequently, L‐MXene, N‐MXene NRs, P‐MXene ML, and P‐MXene L enable a reflection loss (RL) value of −43.14, −63.01, −60.45, and −56.50 dB with a matching thickness of 0.95, 1.51, 3.83, and 4.65 mm, respectively.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3