Porous and Ultra-Flexible Crosslinked MXene/Polyimide Composites for Multifunctional Electromagnetic Interference Shielding

Author:

Zeng Zhi-Hui,Wu Na,Wei Jing-Jiang,Yang Yun-Fei,Wu Ting-Ting,Li Bin,Hauser Stefanie Beatrice,Yang Wei-Dong,Liu Jiu-Rong,Zhao Shan-Yu

Abstract

AbstractLightweight, ultra-flexible, and robust crosslinked transition metal carbide (Ti3C2 MXene) coated polyimide (PI) (C-MXene@PI) porous composites are manufactured via a scalable dip-coating followed by chemical crosslinking approach. In addition to the hydrophobicity, anti-oxidation and extreme-temperature stability, efficient utilization of the intrinsic conductivity of MXene, the interfacial polarization between MXene and PI, and the micrometer-sized pores of the composite foams are achieved. Consequently, the composites show a satisfactory X-band electromagnetic interference (EMI) shielding effectiveness of 22.5 to 62.5 dB at a density of 28.7 to 48.7 mg cm−3, leading to an excellent surface-specific SE of 21,317 dB cm2 g−1. Moreover, the composite foams exhibit excellent electrothermal performance as flexible heaters in terms of a prominent, rapid reproducible, and stable electrothermal effect at low voltages and superior heat performance and more uniform heat distribution compared with the commercial heaters composed of alloy plates. Furthermore, the composite foams are well attached on a human body to check their electromechanical sensing performance, demonstrating the sensitive and reliable detection of human motions as wearable sensors. The excellent EMI shielding performance and multifunctionalities, along with the facile and easy-to-scalable manufacturing techniques, imply promising perspectives of the porous C-MXene@PI composites in next-generation flexible electronics, aerospace, and smart devices.

Funder

Shanghai Jiao Tong University

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Surfaces, Coatings and Films,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3