In‐Situ Construction of V2O5 Nanosheet/Nitrogen‐Doped Carbon Nanosheet Heterostructures with Interfacial C─O Bridging Bonds as the Cathode Material for Zn Ion Batteries

Author:

Lashari Najeeb ur Rehman12ORCID,Kumar Anuj3,Ahmed Irfan4,Zhao Jie1,Hussain Arshad5,Ghani Usman2,Luo Geng2,Yasin Ghulam6,Mushtaq Muhammad Asim2,Liu Dongqing7,Cai Xingke2ORCID

Affiliation:

1. College of Civil and Transportation Engineering Shenzhen University Guangdong 518060 China

2. Institute for Advanced Study Shenzhen University Guangdong 518060 China

3. Nano‐Technology Research Laboratory Department of Chemistry GLA University Mathura Uttar Pradesh 281406 India

4. Department of Physics City University of Hong Kong Kowloon Hong Kong

5. Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC‐HES) King Fahd University of Petroleum & Minerals, KFUPM Box 5040 Dhahran 31261 Saudi Arabia

6. School of Environment and Civil Engineering Dongguan University of Technology Dongguan Guangdong 523808 China

7. College of Mechatronics and Control Engineering Shenzhen University Shenzhen Guangdong 518060 China

Abstract

AbstractLayered oxides are widely used as the electrode materials for metal ion batteries. However, for large radius size ions, such as Zn2+ and Al3+, the tightly stacked layers and poor electrical conductivity of layered oxides result in restricted number of active sites and sluggish reaction kinetics. In this work, a facile in‐situ construction strategy is provided to synthesize layered oxide nanosheets/nitrogen‐doped carbon nanosheet (NC) heterostructure, which shows larger interlayer spacing and better electrical conductivity than the layered oxides. As a result, the Zn2+ ion diffusion inside the interlayer gallery is greatly enhanced and the storage sites inside the gallery can be better used. Meanwhile, the NC layers and oxide nanosheets are bridged by the C─O bonds to form a stable structure, which contributes to a better cycling stability than the pure layered oxides. The optimal V2O5@NC‐400 cathode shows a capacity of 467 mA h g−1 at 0.1 A g−1 for 300 cycles, and long‐term cyclic stability of 4000 cycles at 5 A g−1 with a capacity retention of 92%. All these performance parameters are among the best for vanadium oxide‐based cathode materials.

Funder

National Natural Science Foundation of China

Science, Technology and Innovation Commission of Shenzhen Municipality

Basic and Applied Basic Research Foundation of Guangdong Province

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3