Rheology Engineering for Dry‐Spinning Robust N‐Doped MXene Sediment Fibers toward Efficient Charge Storage

Author:

Xia Zhongming1,Dai Henghan1,Chang Jin1,Yang Jia2,Wang Huifang1,Wang Yurong1,Hui Zengyu3,Wang Rui1,Sun Gengzhi1ORCID

Affiliation:

1. School of Flexible Electronics (Future Technologies) Nanjing Tech University Nanjing 211816 P. R. China

2. School of Materials Science and Engineering Henan Polytechnic University Jiaozuo 454003 P. R. China

3. Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering Northwestern Polytechnical University Xi'an 710072 China

Abstract

AbstractMXene nanosheets are believed to be an ideal candidate for fabricating fiber supercapacitors (FSCs) due to their metallic conductivity and superior volumetric capacitance, while challenges remain in continuously collecting bare MXene fibers (MFs) via the commonly used wet‐spinning technique due to the intercalation of water molecules and a weak interaction between Ti3C2TX nanosheets in aqueous coagulation bath that ultimately leads to a loosely packed structure. To address this issue, for the first time, a dry‐spinning strategy is proposed by engineering the rheological behavior of Ti3C2TX sediment and extruding the highly viscose stock directly through a spinneret followed by a solvent evaperation induced solidification. The dry‐spun Ti3C2TX fibers show an optimal conductivity of 2295 S cm−1, a tensile strength of 64 MPa and a specific capacitance of 948 F cm−3. Nitrogen (N) doping further improves the capacitance of MFs to 1302 F cm−3 without compromising their mechanical and electrical properties. Moreover, the FSC based on N‐doped MFs exhibits a high volumetric capacitance of 293 F cm−3, good stability over 10 000 cycles, excellent flexibility upon bending‐unbending, superior energy/power densities and anti‐self‐discharging property. The excellent electrochemical and mechanical properties endow the dry‐spun MFs great potential for future applications in wearable electronics.

Funder

National Natural Science Foundation of China

Six Talent Peaks Project in Jiangsu Province

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3