Affiliation:
1. College of Materials Science and Engineering Nanjing Tech University Nanjing 211816 China
2. Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites Nanjing Tech University Nanjing 211816 China
3. AECC Beijing Institute of Aeronautical Materials Beijing 100095 China
Abstract
AbstractThe high cost of noble Pd/Pt required for the oxygen reduction reaction (ORR) in the cathode restricts the wide applications of fuel cells. In this study, the synthesis of a novel Pd3CuFe0.5 aerogel electrocatalyst is successfully demonstrated using self‐assembly and lyophilization techniques, employing a mild reducing agent. The resulting aerogel electrocatalyst exhibits a distinctive 3D network structure, possessing a substantial BET‐specific surface area of 75.19 m2 g−1. It is worth noting that the optimized Pd3CuFe0.5 aerogel demonstrates exceptional ORR performance with a high half‐wave potential of 0.92 V versus RHE, a significant limiting current density of 7.6 mA cm−2, and the excellent electrocatalytic stability, superior to the reported noble metal electrocatalysts, with the ORR activity decays only 4.9% after 16 000 s. In addition, the Pd3CuFe0.5 aerogel electrocatalyst shows superior cycling stability for ≈120 h at a charge/discharge current density of 10 mA cm−2, indicating its promising application in fuel cells. Furthermore, the resulting composite aerogel possesses excellent hydrogen evolution reaction and ethanol oxidation reaction activity. The density functional theory calculations show that the partial oxidation of Pd3CuFe0.5 aerogel leads to a negative shift of the d‐band center, which energetically optimizes the binding strength of *O intermediates, therefore accelerating the ORR activity.
Funder
National Natural Science Foundation of China
Subject
Biomaterials,Biotechnology,General Materials Science,General Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献