A Monolayer MoS2 FET with an EOT of 1.1 nm Achieved by the Direct Formation of a High‐κ Er2O3 Insulator Through Thermal Evaporation

Author:

Uchiyama Haruki12ORCID,Maruyama Kohei1,Chen Edward3,Nishimura Tomonori1,Nagashio Kosuke1

Affiliation:

1. Department of Materials Engineering The University of Tokyo Tokyo 113‐8656 Japan

2. Department of Electronics Nagoya University Nagoya 464‐8603 Japan

3. Taiwan Semiconductor Manufacturing Company (TSMC) Ltd.  Hsinchu County 300‐096 Taiwan

Abstract

AbstractAchieving the direct growth of an ultrathin gate insulator with high uniformity and high quality on monolayer transition metal dichalcogenides (TMDCs) remains a challenge due to the chemically inert surface of TMDCs. Although the main solution for this challenge is utilizing buffer layers before oxide is deposited on the atomic layer, this method drastically degrades the total capacitance of the gate stack. In this work, we constructed a novel direct high‐κ Er2O3 deposition system based on thermal evaporation in a differential‐pressure‐type chamber. A uniform Er2O3 layer with an equivalent oxide thickness of 1.1 nm was achieved as the gate insulator for top‐gated MoS2 field‐effect transistors (FETs). The top gate Er2O3 insulator without the buffer layer on MoS2 exhibited a high dielectric constant that reached 18.0, which is comparable to that of bulk Er2O3 and is the highest among thin insulators (< 10 nm) on TMDCs to date. Furthermore, the Er2O3/MoS2 interface (Dit ≈ 6 × 1011 cm−2 eV−1) is confirmed to be clean and is comparable with that of the h‐BN/MoS2 heterostructure. These results prove that high‐quality dielectric properties with retained interface quality can be achieved by this novel deposition technique, facilitating the future development of 2D electronics.

Funder

Japan Society for the Promotion of Science

National Institute of Information and Communications Technology

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3