Conformal Zn‐Benzene Dithiol Thin Films for Temperature‐Sensitive Electronics Grown via Industry‐Feasible Atomic/Molecular Layer Deposition Technique

Author:

Philip Anish12ORCID,Jussila Topias1ORCID,Obenlüneschloß Jorit3ORCID,Zanders David3ORCID,Preischel Florian3ORCID,Kinnunen Jussi2,Devi Anjana345ORCID,Karppinen Maarit1ORCID

Affiliation:

1. Department of Chemistry and Materials Science Aalto University Espoo FI‐00076 Finland

2. Chipmetrics Ltd Joensuu 80130 Finland

3. Inorganic Materials Chemistry Ruhr University Bochum 44801 Bochum Germany

4. Leibniz Institute for Solid State and Materials Research 01069 Dresden Germany

5. Chair of Materials Chemistry Dresden University of Technology 01069 Dresden Germany

Abstract

AbstractThe atomic/molecular layer deposition (ALD/MLD) technique combining both inorganic and organic precursors is strongly emerging as a unique tool to design exciting new functional metal‐organic thin‐film materials. Here, this method is demonstrated to work even at low deposition temperatures and can produce highly stable and conformal thin films, fulfilling the indispensable prerequisites of today's 3D microelectronics and other potential industrial applications. This new ALD/MLD process is developed for Zn‐organic thin films grown from non‐pyrophoric bis‐3‐(N,N‐dimethylamino)propyl zinc [Zn(DMP)2] and 1,4‐benzene dithiol (BDT) precursors. This process yields air‐stable Zn‐BDT films with appreciably high growth per cycle (GPC) of 4.5 Å at 60 °C. The Zn/S ratio is determined at 0.5 with Rutherford backscattering spectrometry (RBS), in line with the anticipated (Zn─S─C6H6─S─)n bonding scheme. The high degree of conformality is shown using lateral high‐aspect‐ratio (LHAR) test substrates; scanning electron microscopy (SEM) analysis shows that the film penetration depth (PD) into the LHAR structure with cavity height of 500 nm is over 200 µm (i.e., aspect‐ratio of 400). It is anticipated that the electrically insulating metal‐organic Zn‐BDT thin films grown via the solvent‐free ALD/MLD technique, can be excellent barrier layers for temperature‐sensitive and flexible electronic devices.

Funder

H2020 European Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3